Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (37ª. 2016. Madrid)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (37ª. 2016. Madrid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trajectory Clustering for the Classification of Eye-Tracking Users With Motor Disorders

Thumbnail
View/Open
2016_Clemotte_Alejandro_Trajectory_clustering_for_the_classification_of_eye-tracking_users_with_motor_disorders.pdf (1.660Mb)
Use this link to cite
http://hdl.handle.net/2183/29567
Atribución-NoComercial-CompartirIgual 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional
Collections
  • Jornadas de Automática (37ª. 2016. Madrid) [173]
Metadata
Show full item record
Title
Trajectory Clustering for the Classification of Eye-Tracking Users With Motor Disorders
Author(s)
Clemotte, Alejandro
Arregui, Harbil
Velasco, Miguel A.
Unzueta, Luis
Goenetxea, Jon
Elordi, Unai
Rocón, Eduardo
Ceres, Ramón
Bengoechea, Javier
Arizkuren, Iosu
Jauregui, Eduardo
Date
2016
Citation
Clemotte, A., Arregui, H., Velasco, M.A., Unzueta, L., Goenetxea, J., Elordi, U., Rocon, E., Ceres, R., Bengoechea, J., Arizkuren, I., Jauregui, E. Trajectory clustering for the classification of eye-tracking users with motor disorders. En Actas de las XXXVII Jornadas de Automática. 7, 8 y 9 de septiembre de 2016, Madrid (pp. 150-155). DOI capítulo: https://doi.org/10.17979/spudc.9788497498081.0150 DOI libro: https://doi.org/10.17979/spudc.9788497498081
Abstract
[Abstract] This paper presents a pilot study completed in the framework of the INTERAAC project. The aim of the project is to develop a new human-computer interaction (HCI) solution based on eye-gaze estimation from webcam images for people with motor disorders such as cerebral palsy, neurodegenerative diseases, and spinal cord injury that are otherwise unable to use a keyboard or mouse. In this study, we analyzed cursor trajectories recorded during the experiment and validated that users with different diseases can be automatically classi ed in groups based on trajectory metrics. For the clustering, Ward's method was used. The metrics are based on speed and acceleration statistics from full fi ltered tracks. The results show that the participants can be grouped into two main clusters. The main contribution of this work is the evaluation of the clustering techniques applied to eye-gaze trajecto- ries for the automatic classi cation of users diseases based on a real experiment carried with the help of three clinical partners in Spain.
Keywords
Eye-gaze estimation
Motor disorder
User-type classification
Trajectory clustering
 
Editor version
https://doi.org/10.17979/spudc.9788497498081.0150
Rights
Atribución-NoComercial-CompartirIgual 4.0 Internacional
ISBN
978-84-617-4298-1 (UCM)
 
978-84-9749-808-1 (UDC electrónico)
 
Related resource
https://doi.org/10.17979/spudc.9788497498081

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback