Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
Use este enlace para citar
http://hdl.handle.net/2183/29480
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
- Investigación (FIC) [1582]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine LearningAutor(es)
Data
2021Cita bibliográfica
Munteanu, C.R.; Gutiérrez-Asorey, P.; Blanes-Rodríguez, M.; Hidalgo-Delgado, I.; Blanco Liverio, M.d.J.; Castiñeiras Galdo, B.; Porto-Pazos, A.B.; Gestal, M.; Arrasate, S.; González-Díaz, H. Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning. Int. J. Mol. Sci. 2021, 22, 11519. https://doi.org/10.3390/ijms222111519
Resumo
[Abstract] The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors.
Palabras chave
Decorated nanoparticles
Drug delivery
Anti-glioblastoma
Big data
Perturbation theory
Machine learning
ChEMBL database
Drug delivery
Anti-glioblastoma
Big data
Perturbation theory
Machine learning
ChEMBL database
Descrición
This article belongs to the Special Issue Nanoformulations and Nano Drug Delivery
Versión do editor
Dereitos
Atribución 4.0 Internacional