Mostrar o rexistro simple do ítem

dc.contributor.authorPuente-Castro, Alejandro
dc.contributor.authorRivero, Daniel
dc.contributor.authorPazos, A.
dc.contributor.authorFernández-Blanco, Enrique
dc.date.accessioned2022-01-24T17:28:50Z
dc.date.available2022-01-24T17:28:50Z
dc.date.issued2021
dc.identifier.citationPuente-Castro, A.; Rivero, D.; Pazos, A.; Fernandez-Blanco, E. Using Reinforcement Learning in the Path Planning of Swarms of UAVs for the Photographic Capture of Terrains. Eng. Proc. 2021, 7, 32. https://doi.org/10.3390/engproc2021007032es_ES
dc.identifier.urihttp://hdl.handle.net/2183/29479
dc.descriptionPresented at the 4th XoveTIC Conference, A Coruña, Spain, 7–8 October 2021.es_ES
dc.description.abstract[Abstract] The number of applications using unmanned aerial vehicles (UAVs) is increasing. The use of UAVs in swarms makes many operators see more advantages than the individual use of UAVs, thus reducing operational time and costs. The main objective of this work is to design a system that, using Reinforcement Learning (RL) and Artificial Neural Networks (ANNs) techniques, can obtain a good path for each UAV in the swarm and distribute the flight environment in such a way that the combination of the captured images is as simple as possible. To determine whether it is better to use a global ANN or multiple local ANNs, experiments have been done over the same map and with different numbers of UAVs at different altitudes. The results are measured based on the time taken to find a solution. The results show that the system works with any number of UAVs if the map is correctly partitioned. On the other hand, using local ANNs seems to be the option that can find solutions faster, ensuring better trajectories than using a single global network. There is no need to use additional map information other than the current state of the environment, like targets or distance maps.es_ES
dc.description.sponsorshipThis research received no external funding.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.urihttps://doi.org/10.3390/engproc2021007032es_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectUAV swarmes_ES
dc.subjectPath planninges_ES
dc.subjectReinforcement learninges_ES
dc.subjectQ-learninges_ES
dc.subjectArtificial neural networkes_ES
dc.subjectTerraines_ES
dc.titleUsing Reinforcement Learning in the Path Planning of Swarms of UAVs for the Photographic Capture of Terrainses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleEngineering Proceedingses_ES
UDC.volume7es_ES
UDC.issue1es_ES
UDC.startPage32es_ES
dc.identifier.doi10.3390/engproc2021007032


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem