Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Deep Learning-Based Strategy to Predict Self-Interference in SFN DTT

Thumbnail
View/Open
Pereira-Ruisanchez_Dariel_2021_Deep_Learning-Based_Strategy.pdf (606.7Kb)
Use this link to cite
http://hdl.handle.net/2183/29351
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
A Deep Learning-Based Strategy to Predict Self-Interference in SFN DTT
Author(s)
Pereira-Ruisánchez, Dariel
Pérez-Adán, Darian
Castedo, Luis
Date
2021
Citation
Pereira-Ruisánchez, D.; Pérez-Adán, D.; Castedo, L. A Deep Learning-Based Strategy to Predict Self-Interference in SFN DTT. Eng. Proc. 2021, 7, 57. https://doi.org/10.3390/engproc2021007057
Abstract
[Abstract] A deep learning-based strategy for the analysis of the self-interference in single frequency networks (SFNs) for digital terrestrial television (DTT) broadcasting is considered. Several laboratory measurements were performed to create a dataset that relates the self-interference parameters and some quality metrics of the resulting received signal. The laboratory setup emulates an SFN scenario with two DTT transmitters. The strongest received signal and the relative values of attenuation and delay between the signals stand for the input parameters. The modulation error ratio (MER) of the strongest received signal, the MER of the resulting signal, and the SFN gain (SFNG) are the output parameters. This dataset is used to train four different multi-layer perceptron (MLP) models to predict accurate maps of interference and signal quality metrics. The considered models are suitable as complements for any multiple frequency network (MFN) coverage software with the capability to return the signal strength and the position data. This way, the SFN self-interference behavior can be predicted by considering only a proper description of the MFN coverage.
Keywords
SFN
Deep learning
Broadcasting
Self-interference
 
Description
This article belongs to the Proceedings of The 4th XoveTIC Conference
Editor version
https://doi.org/10.3390/engproc2021007057
Rights
Atribución 3.0 España

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback