Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coded Aperture Hyperspectral Image Reconstruction

Thumbnail
View/Open
Garcia-Sanchez_Ignacio_2021_Code_Aperture_Hyperspectral.pdf (6.528Mb)
Use this link to cite
http://hdl.handle.net/2183/29333
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • Investigación (FIC) [1681]
Metadata
Show full item record
Title
Coded Aperture Hyperspectral Image Reconstruction
Author(s)
García-Sánchez, Ignacio
Fresnedo, Óscar
González-Coma, José P.
Castedo, Luis
Date
2021
Citation
García-Sánchez I, Fresnedo Ó, González-Coma JP, Castedo L. Coded Aperture Hyperspectral Image Reconstruction. Sensors. 2021; 21(19):6551. https://doi.org/10.3390/s21196551
Abstract
[Abstract] In this work, we study and analyze the reconstruction of hyperspectral images that are sampled with a CASSI device. The sensing procedure was modeled with the help of the CS theory, which enabled efficient mechanisms for the reconstruction of the hyperspectral images from their compressive measurements. In particular, we considered and compared four different type of estimation algorithms: OMP, GPSR, LASSO, and IST. Furthermore, the large dimensions of hyperspectral images required the implementation of a practical block CASSI model to reconstruct the images with an acceptable delay and affordable computational cost. In order to consider the particularities of the block model and the dispersive effects in the CASSI-like sensing procedure, the problem was reformulated, as well as the construction of the variables involved. For this practical CASSI setup, we evaluated the performance of the overall system by considering the aforementioned algorithms and the different factors that impacted the reconstruction procedure. Finally, the obtained results were analyzed and discussed from a practical perspective.
Keywords
Compressive sensing
Hyperspectral imaging
CASSI
Sparse estimation algorithms
Snapshot devices
System evaluation
 
Description
This article belongs to the Special Issue Computational Spectral Imaging
Editor version
https://doi.org/10.3390/s21196551
Rights
Atribución 3.0 España

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback