Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable Feature Selection Using ReliefF Aided by Locality-Sensitive Hashing

Thumbnail
Ver/abrir
Eiras_Franco_Carlos_2021_Scalable_Feature_Selection.pdf (2.062Mb)
Use este enlace para citar
http://hdl.handle.net/2183/28846
Atribución-NoComercial 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial 4.0 Internacional
Coleccións
  • Investigación (FIC) [1685]
Metadatos
Mostrar o rexistro completo do ítem
Título
Scalable Feature Selection Using ReliefF Aided by Locality-Sensitive Hashing
Autor(es)
Eiras-Franco, Carlos
Guijarro-Berdiñas, Bertha
Alonso-Betanzos, Amparo
Bahamonde, Antonio
Data
2021
Cita bibliográfica
Eiras‐Franco C, Guijarro‐Berdiñas B, Alonso‐Betanzos A, Bahamonde A. Scalable feature selection using ReliefF aided by locality‐sensitive hashing. Int J Intell Syst. 2021;36:6161‐6179. https://doi.org/10.1002/int.22546
Resumo
[Abstract] Feature selection algorithms, such as ReliefF, are very important for processing high-dimensionality data sets. However, widespread use of popular and effective such algorithms is limited by their computational cost. We describe an adaptation of the ReliefF algorithm that simplifies the costliest of its step by approximating the nearest neighbor graph using locality-sensitive hashing (LSH). The resulting ReliefF-LSH algorithm can process data sets that are too large for the original ReliefF, a capability further enhanced by distributed implementation in Apache Spark. Furthermore, ReliefF-LSH obtains better results and is more generally applicable than currently available alternatives to the original ReliefF, as it can handle regression and multiclass data sets. The fact that it does not require any additional hyperparameters with respect to ReliefF also avoids costly tuning. A set of experiments demonstrates the validity of this new approach and confirms its good scalability.
Palabras chave
Big data
Feature selection
Locality-sensitive hashing
ReliefF
Scalability
 
Descrición
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Versión do editor
https://doi.org/10.1002/int.22546
Dereitos
Atribución-NoComercial 4.0 Internacional

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións