Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable Feature Selection Using ReliefF Aided by Locality-Sensitive Hashing

Thumbnail
View/Open
Eiras_Franco_Carlos_2021_Scalable_Feature_Selection.pdf (2.062Mb)
Use this link to cite
http://hdl.handle.net/2183/28846
Atribución-NoComercial 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución-NoComercial 4.0 Internacional
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
Scalable Feature Selection Using ReliefF Aided by Locality-Sensitive Hashing
Author(s)
Eiras-Franco, Carlos
Guijarro-Berdiñas, Bertha
Alonso-Betanzos, Amparo
Bahamonde, Antonio
Date
2021
Citation
Eiras‐Franco C, Guijarro‐Berdiñas B, Alonso‐Betanzos A, Bahamonde A. Scalable feature selection using ReliefF aided by locality‐sensitive hashing. Int J Intell Syst. 2021;36:6161‐6179. https://doi.org/10.1002/int.22546
Abstract
[Abstract] Feature selection algorithms, such as ReliefF, are very important for processing high-dimensionality data sets. However, widespread use of popular and effective such algorithms is limited by their computational cost. We describe an adaptation of the ReliefF algorithm that simplifies the costliest of its step by approximating the nearest neighbor graph using locality-sensitive hashing (LSH). The resulting ReliefF-LSH algorithm can process data sets that are too large for the original ReliefF, a capability further enhanced by distributed implementation in Apache Spark. Furthermore, ReliefF-LSH obtains better results and is more generally applicable than currently available alternatives to the original ReliefF, as it can handle regression and multiclass data sets. The fact that it does not require any additional hyperparameters with respect to ReliefF also avoids costly tuning. A set of experiments demonstrates the validity of this new approach and confirms its good scalability.
Keywords
Big data
Feature selection
Locality-sensitive hashing
ReliefF
Scalability
 
Description
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Editor version
https://doi.org/10.1002/int.22546
Rights
Atribución-NoComercial 4.0 Internacional

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback