Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data Augmentation Approaches Using Cycle-Consistent Adversarial Networks for Improving COVID-19 Screening in Portable Chest X-Ray Images

Thumbnail
Ver/Abrir
Iglesias_Moris_Daniel_2021_Data_Augmentation_Approaches.pdf (2.641Mb)
Use este enlace para citar
http://hdl.handle.net/2183/28802
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 4.0 Internacional
Colecciones
  • Investigación (FIC) [1700]
Metadatos
Mostrar el registro completo del ítem
Título
Data Augmentation Approaches Using Cycle-Consistent Adversarial Networks for Improving COVID-19 Screening in Portable Chest X-Ray Images
Autor(es)
Iglesias Morís, Daniel
Moura, Joaquim de
Novo Buján, Jorge
Ortega Hortas, Marcos
Fecha
2021
Cita bibliográfica
MORÍS, Daniel Iglesias, et al. Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest X-ray images. Expert Systems with Applications, 2021, vol. 185, p. 115681. DOI: 10.1016/j.eswa.2021.115681
Resumen
[Abstract] The current COVID-19 pandemic, that has caused more than 100 million cases as well as more than two million deaths worldwide, demands the development of fast and accurate diagnostic methods despite the lack of available samples. This disease mainly affects the respiratory system of the patients and can lead to pneumonia and to severe cases of acute respiratory syndrome that result in the formation of several pathological structures in the lungs. These pathological structures can be explored taking advantage of chest X-ray imaging. As a recommendation for the health services, portable chest X-ray devices should be used instead of conventional fixed machinery, in order to prevent the spread of the pathogen. However, portable devices present several problems (specially those related with capture quality). Moreover, the subjectivity and the fatigue of the clinicians lead to a very difficult diagnostic process. To overcome that, computer-aided methodologies can be very useful even taking into account the lack of available samples that the COVID-19 affectation shows. In this work, we propose an improvement in the performance of COVID-19 screening, taking advantage of several cycle generative adversarial networks to generate useful and relevant synthetic images to solve the lack of COVID-19 samples, in the context of poor quality and low detail datasets obtained from portable devices. For validating this proposal for improved COVID-19 screening, several experiments were conducted. The results demonstrate that this data augmentation strategy improves the performance of a previous COVID-19 screening proposal, achieving an accuracy of 98.61% when distinguishing among NON-COVID-19 (i.e. normal control samples and samples with pathologies others than COVID-19) and genuine COVID-19 samples. It is remarkable that this methodology can be extrapolated to other pulmonary pathologies and even other medical imaging domains to overcome the data scarcity.
Palabras clave
X-ray portable device
COVID-19
Data augmentation
Screening
CycleGAN
Deep learning
 
Descripción
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Versión del editor
http://dx.doi.org/10.1016/j.eswa.2021.115681
Derechos
Atribución-NoComercial-SinDerivadas 4.0 Internacional

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias