Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

SOPRENE: Assessment of the Spanish Armada’s Predictive Maintenance Tool for Naval Assets

Thumbnail
Ver/abrir
Fontenla-Romero_Oscar_2021_SOPRENE.pdf (1.355Mb)
Use este enlace para citar
http://hdl.handle.net/2183/28448
Atribución 4.0 Internacional (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional (CC BY 4.0)
Coleccións
  • Investigación (FIC) [1679]
Metadatos
Mostrar o rexistro completo do ítem
Título
SOPRENE: Assessment of the Spanish Armada’s Predictive Maintenance Tool for Naval Assets
Autor(es)
Fernández Barrero, David
Fontenla-Romero, Óscar
Lamas-López, Francisco
Novoa-Paradela, David
R-Moreno, María
Sanz, David
Data
2021
Cita bibliográfica
Fernández-Barrero, D.; Fontenla-Romero, O.; Lamas-López, F.; Novoa-Paradela, D.; R-Moreno, M.D.; Sanz, D. SOPRENE: Assessment of the Spanish Armada’s Predictive Maintenance Tool for Naval Assets. Appl. Sci. 2021, 11, 7322. https://doi.org/10.3390/app11167322
Resumo
[Abstract] Predictive maintenance has lately proved to be a useful tool for optimizing costs, performance and systems availability. Furthermore, the greater and more complex the system, the higher the benefit but also the less applied: Architectural, computational and complexity limitations have historically ballasted the adoption of predictive maintenance on the biggest systems. This has been especially true in military systems where the security and criticality of the operations do not accept uncertainty. This paper describes the work conducted in addressing these challenges, aiming to evaluate its applicability in a real scenario: It presents a specific design and development for an actual big and diverse ecosystem of equipment, proposing an semi-unsupervised predictive maintenance system. In addition, it depicts the solution deployment, test and technological adoption of real-world military operative environments and validates the applicability.
Palabras chave
Predictive maintenance
Behavioural anomaly detection
Machine learning
Deep learning
Warships
 
Versión do editor
https://doi.org/10.3390/app11167322
Dereitos
Atribución 4.0 Internacional (CC BY 4.0)

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións