ML models for real-time hybrid systems

Use este enlace para citar
http://hdl.handle.net/2183/28376
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-CompartirIgual 4.0 Internacional
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Coleccións
Metadatos
Mostrar o rexistro completo do ítemTítulo
ML models for real-time hybrid systemsAutor(es)
Data
2021Cita bibliográfica
Capel, M.I. ML models for real-time hybrid systems. En XLII Jornadas de Automática: libro de actas. Castelló, 1-3 de septiembre de 2021 (pp. 752-759). DOI capítulo: https://doi.org/10.17979/spudc.9788497498043.752 DOI libro: https://doi.org/10.17979/spudc.9788497498043
Resumo
[Abstract] A correct system design can be systematically obtained from a specification model of a real-time system that integrates hybrid measurements In a realistic industrial environment, this has been carried out through complete Matlab / Simulink / Stateflow models. However, there is a widespread interest in carrying out that modeling resorting to Machine Learning models, which can be understood as Automated Machine Learning for Real-time systems that present some degree of hybridation. An AC motor controller which must be able to maintain a constant air flow through a filter is one of these systems. The article also discusses a practical application of the method for implementing a closed loop control system to show how the proposed procedure can be applied to derive complete hybrid system designs with ANN.
Palabras chave
Automated machine learning
Realtime embedded control systems
Cyber-physical systems
Time series forecasting
Neural networks
Energy efficiency
Realtime embedded control systems
Cyber-physical systems
Time series forecasting
Neural networks
Energy efficiency
Versión do editor
Dereitos
Atribución-NoComercial-CompartirIgual 4.0 Internacional
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-804-3