ML models for real-time hybrid systems

Use este enlace para citar
http://hdl.handle.net/2183/28376
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 Internacional
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Colecciones
Metadatos
Mostrar el registro completo del ítemTítulo
ML models for real-time hybrid systemsAutor(es)
Fecha
2021Cita bibliográfica
Capel, M.I. ML models for real-time hybrid systems. En XLII Jornadas de Automática: libro de actas. Castelló, 1-3 de septiembre de 2021 (pp. 752-759). DOI capítulo: https://doi.org/10.17979/spudc.9788497498043.752 DOI libro: https://doi.org/10.17979/spudc.9788497498043
Resumen
[Abstract] A correct system design can be systematically obtained from a specification model of a real-time system that integrates hybrid measurements In a realistic industrial environment, this has been carried out through complete Matlab / Simulink / Stateflow models. However, there is a widespread interest in carrying out that modeling resorting to Machine Learning models, which can be understood as Automated Machine Learning for Real-time systems that present some degree of hybridation. An AC motor controller which must be able to maintain a constant air flow through a filter is one of these systems. The article also discusses a practical application of the method for implementing a closed loop control system to show how the proposed procedure can be applied to derive complete hybrid system designs with ANN.
Palabras clave
Automated machine learning
Realtime embedded control systems
Cyber-physical systems
Time series forecasting
Neural networks
Energy efficiency
Realtime embedded control systems
Cyber-physical systems
Time series forecasting
Neural networks
Energy efficiency
Versión del editor
Derechos
Atribución-NoComercial-CompartirIgual 4.0 Internacional
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-804-3