Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (42ª. 2021. Castellón)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (42ª. 2021. Castellón)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ML models for real-time hybrid systems

Thumbnail
View/Open
2021_Capel_Manuel_ML_models_for_real-time_hybrid_systems.pdf (1.340Mb)
Use this link to cite
http://hdl.handle.net/2183/28376
Atribución-NoComercial-CompartirIgual 4.0 Internacional 
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Collections
  • Jornadas de Automática (42ª. 2021. Castellón) [103]
Metadata
Show full item record
Title
ML models for real-time hybrid systems
Author(s)
Capel, Manuel I.
Date
2021
Citation
Capel, M.I. ML models for real-time hybrid systems. En XLII Jornadas de Automática: libro de actas. Castelló, 1-3 de septiembre de 2021 (pp. 752-759). DOI capítulo: https://doi.org/10.17979/spudc.9788497498043.752 DOI libro: https://doi.org/10.17979/spudc.9788497498043
Abstract
[Abstract] A correct system design can be systematically obtained from a specification model of a real-time system that integrates hybrid measurements In a realistic industrial environment, this has been carried out through complete Matlab / Simulink / Stateflow models. However, there is a widespread interest in carrying out that modeling resorting to Machine Learning models, which can be understood as Automated Machine Learning for Real-time systems that present some degree of hybridation. An AC motor controller which must be able to maintain a constant air flow through a filter is one of these systems. The article also discusses a practical application of the method for implementing a closed loop control system to show how the proposed procedure can be applied to derive complete hybrid system designs with ANN.
Keywords
Automated machine learning
Realtime embedded control systems
Cyber-physical systems
Time series forecasting
Neural networks
Energy efficiency
 
Editor version
https://doi.org/10.17979/spudc.9788497498043.752
Rights
Atribución-NoComercial-CompartirIgual 4.0 Internacional https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-804-3

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback