Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating Lengths-Of-Stay of Hospitalized COVID-19 Patients Using a Non-parametric Model: A Case Study in Galicia (Spain)

Thumbnail
Ver/Abrir
estimating_lengthsofstay_2021.pdf (674.3Kb)
Use este enlace para citar
http://hdl.handle.net/2183/28123
Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional
Colecciones
  • Investigación (FIC) [1725]
Metadatos
Mostrar el registro completo del ítem
Título
Estimating Lengths-Of-Stay of Hospitalized COVID-19 Patients Using a Non-parametric Model: A Case Study in Galicia (Spain)
Autor(es)
López-Cheda, Ana
Cao, Ricardo
De Salazar, Pablo M.
Jácome, M. A.
Fecha
2021
Cita bibliográfica
López-Cheda A, Jácome M-A, Cao R, De Salazar PM (2021). Estimating lengths-of-stay of hospitalised COVID-19 patients using a non-parametric model: a case study in Galicia (Spain). Epidemiology and Infection 149, e102, 1–8. https://doi.org/ 10.1017/S0950268821000959
Resumen
[Abstract] Estimating the lengths-of-stay (LoS) of hospitalised COVID-19 patients is key for predicting the hospital beds’ demand and planning mitigation strategies, as overwhelming the healthcare systems has critical consequences for disease mortality. However, accurately mapping the time-to-event of hospital outcomes, such as the LoS in the intensive care unit (ICU), requires understanding patient trajectories while adjusting for covariates and observation bias, such as incomplete data. Standard methods, such as the Kaplan-Meier estimator, require prior assumptions that are untenable given current knowledge. Using real-time surveillance data from the first weeks of the COVID-19 epidemic in Galicia (Spain), we aimed to model the time-to-event and event probabilities of patients’ hospitalised, without parametric priors and adjusting for individual covariates. We applied a non-parametric mixture cure model and compared its performance in estimating hospital ward (HW)/ICU LoS to the performances of commonly used methods to estimate survival. We showed that the proposed model outperformed standard approaches, providing more accurate ICU and HW LoS estimates. Finally, we applied our model estimates to simulate COVID-19 hospital demand using a Monte Carlo algorithm. We provided evidence that adjusting for sex, generally overlooked in prediction models, together with age is key for accurately forecasting HW and ICU occupancy, as well as discharge or death outcomes.
Palabras clave
COVID-19
Forecasting
ICU
Length of stay
Mixture cure model
Non-parametric
 
Versión del editor
https://doi.org/10.1017/S0950268821000959
Derechos
Atribución 4.0 Internacional

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias