Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel EEG Signal

Thumbnail
Ver/abrir
FernandezBlanco_2019_Convolutional_neural_networks_sleep_stage_scoring_two_channel_EEG_signal (358.6Kb)
Use este enlace para citar
http://hdl.handle.net/2183/27654
Coleccións
  • Investigación (FIC) [1682]
Metadatos
Mostrar o rexistro completo do ítem
Título
Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel EEG Signal
Autor(es)
Fernández-Blanco, Enrique
Rivero, Daniel
Pazos, A.
Data
2019-06-26
Cita bibliográfica
Fernandez-Blanco E, Rivero D, Pazos A. Convolutional neural networks for sleep stage scoring on a two-channel EEG signal. Soft Comput.2020; 24:4067-4079
Resumo
[Abstract] Sleeping problems have become one of the major diseases all over the world. To tackle this issue, the basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep. After its recording, the specialists have to score the different signals according to one of the standard guidelines. This process is carried out manually, which can be highly time consuming and very prone to annotation errors. Therefore, over the years, many approaches have been explored in an attempt to support the specialists in this task. In this paper, an approach based on convolutional neural networks is presented, where an in-depth comparison is performed in order to determine the convenience of using more than one signal simultaneously as input. Additionally, the models were also used as parts of an ensemble model to check whether any useful information can be extracted from signal processing a single signal at a time which the dual-signal model cannot identify. Tests have been performed by using a well-known dataset called expanded sleep-EDF, which is the most commonly used dataset as benchmark for this problem. The tests were carried out with a leave-one-out cross-validation over the patients, which ensures that there is no possible contamination between training and testing. The resulting proposal is a network smaller than previously published ones, but which overcomes the results of any previous models on the same dataset. The best result shows an accuracy of 92.67% and a Cohen’s Kappa value over 0.84 compared to human experts.
Palabras chave
Convolutional neural networks
Deep learning
Electroencephalography
Polysomnography
Signal processing
 
Descrición
This is a pre-print of an article published in Soft Computing. The final authenticated version is available online at: https://doi.org/10.1007/s00500-019-04174-1
Versión do editor
https://doi.org/10.1007/s00500-019-04174-1
ISSN
1432-7643

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións