Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast search of third-order epistatic interactions on CPU and GPU clusters

Thumbnail
Ver/Abrir
C.Ponte-Fernández_2019_Fast_search_of_third-order_epistatic_interactions.pdf (585.4Kb)
Use este enlace para citar
http://hdl.handle.net/2183/27614
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Fast search of third-order epistatic interactions on CPU and GPU clusters
Autor(es)
Ponte-Fernández, Christian
González-Domínguez, Jorge
Martín, María J.
Fecha
2019-05-27
Cita bibliográfica
Ponte-Fernández, C., González-Domínguez, J., & Martín, M. J. (2020). Fast search of third-order epistatic interactions on cpu and gpu clusters. The International Journal of High Performance Computing Applications, 34(1), 20-29.
Resumen
[Abstract] Genome-Wide Association Studies (GWASs), analyses that try to find a link between a given phenotype (such as a disease) and genetic markers, have been growing in popularity in the recent years. Relations between phenotypes and genotypes are not easy to identify, as most of the phenotypes are a product of the interaction between multiple genes, a phenomenon known as epistasis. Many authors have resorted to different approaches and hardware architectures in order to mitigate the exponential time complexity of the problem. However, these studies make some compromises in order to keep a reasonable execution time, such as limiting the number of genetic markers involved in the interaction, or discarding some of these markers in an initial filtering stage. This work presents MPI3SNP, a tool that implements a three-way exhaustive search for cluster architectures with the aim of mitigating the exponential growth of the run-time. Modern cluster solutions usually incorporate GPUs. Thus, MPI3SNP includes implementations for both multi-CPU and multi-GPU clusters. To contextualize the performance achieved, MPI3SNP is able to analyze an input of 6300 genetic markers and 3200 samples in less than 6 min using 768 CPU cores or 4 min using 8 NVIDIA K80 GPUs. The source code is available at https://github.com/chponte/mpi3snp.
Palabras clave
Bioinformatics
Epistasis
Genetic interaction
GPU
GWAS
High performance computing
MPI
Mutual information
 
Versión del editor
https://doi.org/10.1177/1094342019852128
Derechos
Christian Ponte-Fernández; Jorge González-Domínguez; María J Martín, Fast search of third-order epistatic interactions on CPU and GPU clusters, The International Journal of High Performance Computing Applications(Volume: 34 issue: 1) pp. 20-29. Copyright © 2019 (Copyright Holder). DOI: 10.1177/1094342019852128.
ISSN
1094-3420
1741-2846
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias