Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic Seizure Detection Based on Star Graph Topological Indices

Thumbnail
Ver/Abrir
E.Fernandez-Blanco_2012_Automatic_seizure_detection_based_on_star_graph_topological_indices.pdf (400.7Kb)
Use este enlace para citar
http://hdl.handle.net/2183/27587
Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
  • Investigación (FIC) [1678]
Metadatos
Mostrar el registro completo del ítem
Título
Automatic Seizure Detection Based on Star Graph Topological Indices
Autor(es)
Fernández-Blanco, Enrique
Rivero, Daniel
Rabuñal, Juan R.
Dorado, Julián
Pazos, A.
Munteanu, Cristian-Robert
Fecha
2012-08-15
Cita bibliográfica
Fernandez-Blanco, E., Rivero, D., Rabunal, J., Dorado, J., Pazos, A., & Munteanu, C. R. (2012). Automatic seizure detection based on star graph topological indices. Journal of neuroscience methods, 209(2), 410-419.
Resumen
[Abstract] The recognition of seizures is very important for the diagnosis of patients with epilepsy. The seizure is a process of rhythmic discharge in brain and occurs rarely and unpredictably. This behavior generates a need of an automatic detection of seizures by using the signals of long-term electroencephalography (EEG) recordings. Due to the non-stationary character of EEG signals, the conventional methods of frequency analysis are not the best alternative to obtain good results in diagnostic purpose. The present work proposes a method of EEG signal analysis based on star graph topological indices (SGTIs) for the first time. The signal information, such as amplitude and time occurrence, is codified into invariant SGTIs which are the basis for the classification models that can discriminate the epileptic EEG records from the non-epileptic ones. The method with SGTIs and the simplest linear discriminant methods provide similar results to those previously published, which are based on the time-frequency analysis and artificial neural networks. Thus, this work proposes a simpler and faster alternative for automatic detection of seizures from the EEG recordings.
Palabras clave
Automatic signal processing
Epilepsy seizure detection
EEG signal
Star graphs
Linear discriminant analysis
 
Versión del editor
https://doi.org/10.1016/j.jneumeth.2012.07.004
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
0165-0270

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias