Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic Seizure Detection Based on Star Graph Topological Indices

Thumbnail
View/Open
E.Fernandez-Blanco_2012_Automatic_seizure_detection_based_on_star_graph_topological_indices.pdf (400.7Kb)
Use this link to cite
http://hdl.handle.net/2183/27587
Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España
Collections
  • Investigación (FIC) [1678]
Metadata
Show full item record
Title
Automatic Seizure Detection Based on Star Graph Topological Indices
Author(s)
Fernández-Blanco, Enrique
Rivero, Daniel
Rabuñal, Juan R.
Dorado, Julián
Pazos, A.
Munteanu, Cristian-Robert
Date
2012-08-15
Citation
Fernandez-Blanco, E., Rivero, D., Rabunal, J., Dorado, J., Pazos, A., & Munteanu, C. R. (2012). Automatic seizure detection based on star graph topological indices. Journal of neuroscience methods, 209(2), 410-419.
Abstract
[Abstract] The recognition of seizures is very important for the diagnosis of patients with epilepsy. The seizure is a process of rhythmic discharge in brain and occurs rarely and unpredictably. This behavior generates a need of an automatic detection of seizures by using the signals of long-term electroencephalography (EEG) recordings. Due to the non-stationary character of EEG signals, the conventional methods of frequency analysis are not the best alternative to obtain good results in diagnostic purpose. The present work proposes a method of EEG signal analysis based on star graph topological indices (SGTIs) for the first time. The signal information, such as amplitude and time occurrence, is codified into invariant SGTIs which are the basis for the classification models that can discriminate the epileptic EEG records from the non-epileptic ones. The method with SGTIs and the simplest linear discriminant methods provide similar results to those previously published, which are based on the time-frequency analysis and artificial neural networks. Thus, this work proposes a simpler and faster alternative for automatic detection of seizures from the EEG recordings.
Keywords
Automatic signal processing
Epilepsy seizure detection
EEG signal
Star graphs
Linear discriminant analysis
 
Editor version
https://doi.org/10.1016/j.jneumeth.2012.07.004
Rights
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
0165-0270

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback