Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Early Detection of Cyberbullying on Social Media Networks

Thumbnail
View/Open
M.F.López-Vizcaino_2021_Early_detection_of_cyberbullying_on_social_media_networks.pdf (815.8Kb)
Use this link to cite
http://hdl.handle.net/2183/27438
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 4.0 Internacional
Collections
  • Investigación (FIC) [1728]
Metadata
Show full item record
Title
Early Detection of Cyberbullying on Social Media Networks
Author(s)
López-Vizcaíno, Manuel F.
Nóvoa, Francisco
Carneiro, Víctor
Cacheda, Fidel
Date
2021-05
Citation
Manuel F. López-Vizcaíno, Francisco J. Nóvoa, Victor Carneiro, Fidel Cacheda, Early detection of cyberbullying on social media networks, Future Generation Computer Systems, Volume 118, 2021, Pages 219-229, ISSN 0167-739X, https://doi.org/10.1016/j.future.2021.01.006.
Abstract
[Abstract] Cyberbullying is an important issue for our society and has a major negative effect on the victims, that can be highly damaging due to the frequency and high propagation provided by Information Technologies. Therefore, the early detection of cyberbullying in social networks becomes crucial to mitigate the impact on the victims. In this article, we aim to explore different approaches that take into account the time in the detection of cyberbullying in social networks. We follow a supervised learning method with two different specific early detection models, named threshold and dual. The former follows a more simple approach, while the latter requires two machine learning models. To the best of our knowledge, this is the first attempt to investigate the early detection of cyberbullying. We propose two groups of features and two early detection methods, specifically designed for this problem. We conduct an extensive evaluation using a real world dataset, following a time-aware evaluation that penalizes late detections. Our results show how we can improve baseline detection models up to 42%.
Keywords
Cyberbullying
Social networks
Early detection
Machine learning
 
Editor version
https://doi.org/10.1016/j.future.2021.01.006
Rights
Atribución-NoComercial-SinDerivadas 4.0 Internacional
ISSN
1872-7115

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback