Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Kalman Filter for Nonlinear Attitude Estimation Using Time Variable Matrices and Quaternions

Thumbnail
View/Open
sensors-20-06731.pdf (2.161Mb)
Use this link to cite
http://hdl.handle.net/2183/27218
Atribución 4.0
Except where otherwise noted, this item's license is described as Atribución 4.0
Collections
  • Investigación (EPEF) [590]
Metadata
Show full item record
Title
A Kalman Filter for Nonlinear Attitude Estimation Using Time Variable Matrices and Quaternions
Author(s)
Deibe Díaz, Álvaro
Antón Nacimiento, José Augusto
Cardenal, Jesús
López Peña, Fernando
Date
2020
Citation
Deibe, Á.; Antón Nacimiento, J.A.; Cardenal, J.; López Peña, F. A Kalman Filter for Nonlinear Attitude Estimation Using Time Variable Matrices and Quaternions. Sensors 2020, 20, 6731. https://doi.org/10.3390/s20236731
Abstract
[Abstract] The nonlinear problem of sensing the attitude of a solid body is solved by a novel implementation of the Kalman Filter. This implementation combines the use of quaternions to represent attitudes, time-varying matrices to model the dynamic behavior of the process and a particular state vector. This vector was explicitly created from measurable physical quantities, which can be estimated from the filter input and output. The specifically designed arrangement of these three elements and the way they are combined allow the proposed attitude estimator to be formulated following a classical Kalman Filter approach. The result is a novel estimator that preserves the simplicity of the original Kalman formulation and avoids the explicit calculation of Jacobian matrices in each iteration or the evaluation of augmented state vectors.
Keywords
Kalman, Filtro de
Cuaterniones
Sensores de desplazamiento
Kalman filter
Attitude estimation
IMU
AHRS
Quaternions
 
Editor version
https://doi.org/10.3390/s20236731
Rights
Atribución 4.0
ISSN
1424-8220

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback