Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Application of Fish Detection Based on Eye Search with Artificial Vision and Artificial Neural Networks

Thumbnail
Ver/abrir
A.J.Rico-Díaz_2020_An_Application_of_Fish_Detection_Based_on_Eye_Search.pdf (5.841Mb)
Use este enlace para citar
http://hdl.handle.net/2183/26998
Atribución 4.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 España
Coleccións
  • Investigación (FIC) [1678]
Metadatos
Mostrar o rexistro completo do ítem
Título
An Application of Fish Detection Based on Eye Search with Artificial Vision and Artificial Neural Networks
Autor(es)
Rico-Díaz, Ángel-José
Rabuñal, Juan R.
Gestal, M.
Mures, Omar A.
Puertas, Jerónimo
Data
2020-10-27
Cita bibliográfica
Rico-Díaz, Á. J., Rabuñal, J. R., Gestal, M., Mures, O. A., & Puertas, J. (2020). An Application of Fish Detection Based on Eye Search with Artificial Vision and Artificial Neural Networks. Water, 12(11), 3013.
Resumo
[Abstract] A fish can be detected by means of artificial vision techniques, without human intervention or handling the fish. This work presents an application for detecting moving fish in water by artificial vision based on the detection of a fish′s eye in the image, using the Hough algorithm and a Feed-Forward network. In addition, this method of detection is combined with stereo image recording, creating a disparity map to estimate the size of the detected fish. The accuracy and precision of this approach has been tested in several assays with living fish. This technique is a non-invasive method working in real-time and it can be carried out with low cost. Furthermore, it could find application in aquariums, fish farm management and to count the number of fish which swim through a fishway. In a fish farm it is important to know how the size of the fish evolves in order to plan the feeding and when to be able to catch fish. Our methodology allows fish to be detected and their size and weight estimated as they move underwater, engaging in natural behavior.
Palabras chave
Computer-vision
Hough transformation
Artificial neural networks
Fish-size
Stereovision
Eye-detection
 
Versión do editor
https://doi.org/10.3390/w12113013
Dereitos
Atribución 4.0 España
ISSN
2073-4441

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións