aspBEEF: Explaining Predictions Through Optimal Clustering

Use este enlace para citar
http://hdl.handle.net/2183/26555
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
- Investigación (FIC) [1678]
Metadatos
Mostrar o rexistro completo do ítemTítulo
aspBEEF: Explaining Predictions Through Optimal ClusteringData
2020-08-28Cita bibliográfica
Cabalar, P.; Martín, R.; Muñiz, B.; Pérez, G. aspBEEF: Explaining Predictions Through Optimal Clustering . Proceedings 2020, 54, 51. https://doi.org/10.3390/proceedings2020054051
Resumo
[Abstract]
In this paper we introduce aspBEEF, a tool for generating explanations for the outcome of an arbitrary machine learning classifier. This is done using Grover’s et al. framework known as Balanced English Explanations of Forecasts (BEEF) that generates explanations in terms of in terms of finite intervals over the values of the input features. Since the problem of obtaining an optimal BEEF explanation has been proved to be NP-complete, BEEF existing implementation computes an approximation. In this work we use instead an encoding into the Answer Set Programming paradigm, specialized in solving NP problems, to guarantee that the computed solutions are optimal.
Palabras chave
Knowledge representation
Answer set programming
Explainable AI
Answer set programming
Explainable AI
Versión do editor
Dereitos
Atribución 4.0 Internacional
ISSN
2504-3900