Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

aspBEEF: Explaining Predictions Through Optimal Clustering

Thumbnail
View/Open
P.Cabalar_2020_aspBEEF_Explaining_Predictions.pdf (192.9Kb)
Use this link to cite
http://hdl.handle.net/2183/26555
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Investigación (FIC) [1678]
Metadata
Show full item record
Title
aspBEEF: Explaining Predictions Through Optimal Clustering
Author(s)
Cabalar, Pedro
Martín, Rodrigo
Muñiz, Brais
Pérez, Gilberto
Date
2020-08-28
Citation
Cabalar, P.; Martín, R.; Muñiz, B.; Pérez, G. aspBEEF: Explaining Predictions Through Optimal Clustering . Proceedings 2020, 54, 51. https://doi.org/10.3390/proceedings2020054051
Abstract
[Abstract] In this paper we introduce aspBEEF, a tool for generating explanations for the outcome of an arbitrary machine learning classifier. This is done using Grover’s et al. framework known as Balanced English Explanations of Forecasts (BEEF) that generates explanations in terms of in terms of finite intervals over the values of the input features. Since the problem of obtaining an optimal BEEF explanation has been proved to be NP-complete, BEEF existing implementation computes an approximation. In this work we use instead an encoding into the Answer Set Programming paradigm, specialized in solving NP problems, to guarantee that the computed solutions are optimal.
Keywords
Knowledge representation
Answer set programming
Explainable AI
 
Editor version
https://doi.org/10.3390/proceedings2020054051
Rights
Atribución 4.0 Internacional
ISSN
2504-3900

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback