Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regression Tree Based Explanation for Anomaly Detection Algorithm

Thumbnail
View/Open
I.López-Rioboo_Botana_2020_Regression_Tree_Based_Explanation_for_Anomaly.pdf (310.3Kb)
Use this link to cite
http://hdl.handle.net/2183/26501
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Investigación (FIC) [1678]
Metadata
Show full item record
Title
Regression Tree Based Explanation for Anomaly Detection Algorithm
Author(s)
López-Riobóo Botana, Iñigo Luis
Eiras-Franco, Carlos
Alonso-Betanzos, Amparo
Date
2020-08-18
Citation
Botana, I.L.-R.; Eiras-Franco, C.; Alonso-Betanzos, A. Regression Tree Based Explanation for Anomaly Detection Algorithm. Proceedings 2020, 54, 7. https://doi.org/10.3390/proceedings2020054007
Abstract
[Abstract] This work presents EADMNC (Explainable Anomaly Detection on Mixed Numerical and Categorical spaces), a novel approach to address explanation using an anomaly detection algorithm, ADMNC, which provides accurate detections on mixed numerical and categorical input spaces. Our improved algorithm leverages the formulation of the ADMNC model to offer pre-hoc explainability based on CART (Classification and Regression Trees). The explanation is presented as a segmentation of the input data into homogeneous groups that can be described with a few variables, offering supervisors novel information for justifications. To prove scalability and interpretability, we list experimental results on real-world large datasets focusing on network intrusion detection domain.
Keywords
XAI
CART
Anomaly detection
Scalability
Distributed computing
Apache Spark
 
Editor version
https://doi.org/10.3390/proceedings2020054007
Rights
Atribución 4.0 Internacional
ISSN
2504-3900

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback