Joint Optic Disc and Cup Segmentation Using Self-Supervised Multimodal Reconstruction Pre-Training

Use este enlace para citar
http://hdl.handle.net/2183/26438
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
- Investigación (FIC) [1634]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Joint Optic Disc and Cup Segmentation Using Self-Supervised Multimodal Reconstruction Pre-TrainingData
2020-08-20Cita bibliográfica
Hervella, Á.S.; Ramos, L.; Rouco, J.; Novo, J.; Ortega, M. Joint Optic Disc and Cup Segmentation Using Self-Supervised Multimodal Reconstruction Pre-Training. Proceedings 2020, 54, 25. https://doi.org/10.3390/proceedings2020054025
Resumo
[Abstract]
The analysis of the optic disc and cup in retinal images is important for the early diagnosis of glaucoma. In order to improve the joint segmentation of these relevant retinal structures, we propose a novel approach applying the self-supervised multimodal reconstruction of retinal images as pre-training for deep neural networks. The proposed approach is evaluated on different public datasets. The obtained results indicate that the self-supervised multimodal reconstruction pre-training improves the performance of the segmentation. Thus, the proposed approach presents a great potential for also improving the interpretable diagnosis of glaucoma.
Palabras chave
Deep learning
Self-supervised learning
Segmentation
Eye fundus
Glaucoma
Self-supervised learning
Segmentation
Eye fundus
Glaucoma
Versión do editor
Dereitos
Atribución 4.0 Internacional
ISSN
2504-3900