Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Network Anomaly Detection Using Machine Learning Techniques

Thumbnail
Ver/Abrir
J.J.Estevez_2020_Network_Anomaly_Detection_Using_Machine.pdf (170.2Kb)
Use este enlace para citar
http://hdl.handle.net/2183/26422
Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Network Anomaly Detection Using Machine Learning Techniques
Autor(es)
Estévez Pereira, Julio Jairo
Fernández, Diego
Nóvoa, Francisco
Fecha
2020-08-19
Cita bibliográfica
Estévez-Pereira, J.J.; Fernández, D.; Novoa, F.J. Network Anomaly Detection Using Machine Learning Techniques. Proceedings 2020, 54, 8. https://doi.org/10.3390/proceedings2020054008
Resumen
[Abstract] While traditional network security methods have been proven useful until now, the flexibility of machine learning techniques makes them a solid candidate in the current scene of our networks. In this paper, we assess how well the latter are capable of detecting security threats in a corporative network. To that end, we configure and compare several models to find the one which fits better with our needs. Furthermore, we distribute the computational load and storage so we can handle extensive volumes of data. The algorithms that we use to create our models, Random Forest, Naive Bayes, and Deep Neural Networks (DNN), are both divergent and tested in other papers in order to make our comparison richer. For the distribution phase, we operate with Apache Structured Streaming, PySpark, and MLlib. As for the results, it is relevant to mention that our dataset has been found to be effectively modelable with just a reduced number of features. Finally, given the outcomes obtained, we find this line of research encouraging and, therefore, this approach worth pursuing.
Palabras clave
Machine learning
IDS
Network security
Distributed computing
Network flow
 
Versión del editor
https://doi.org/10.3390/proceedings2020054008
Derechos
Atribución 4.0 Internacional
ISSN
2504-3900

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias