SeQual: Big Data Tool to Perform Quality Control and Data Preprocessing of Large NGS Datasets

Use este enlace para citar
http://hdl.handle.net/2183/26270
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0)
Colecciones
- Investigación (FIC) [1656]
Metadatos
Mostrar el registro completo del ítemTítulo
SeQual: Big Data Tool to Perform Quality Control and Data Preprocessing of Large NGS DatasetsFecha
2020-08-07Cita bibliográfica
R. R. Expósito, R. Galego-Torreiro and J. González-Domínguez, "SeQual: Big Data Tool to Perform Quality Control and Data Preprocessing of Large NGS Datasets," in IEEE Access, vol. 8, pp. 146075-146084, 2020, doi: 10.1109/ACCESS.2020.3015016.
Resumen
[Abstract]
This paper presents SeQual, a scalable tool to efficiently perform quality control of large genomic datasets. Our tool currently supports more than 30 different operations (e.g., filtering, trimming, formatting) that can be applied to DNA/RNA reads in FASTQ/FASTA formats to improve subsequent downstream analyses, while providing a simple and user-friendly graphical interface for non-expert users. Furthermore, SeQual takes full advantage of Big Data technologies to process massive datasets on distributed-memory systems such as clusters by relying on the open-source Apache Spark cluster computing framework. Our scalable Spark-based implementation allows to reduce the runtime from more than three hours to less than 20 minutes when processing a paired-end dataset with 251 million reads per input file on an 8-node multi-core cluster.
Palabras clave
Big data
Next generation sequencing (NGS)
Bioinformatics
Quality control
Apache spark
Next generation sequencing (NGS)
Bioinformatics
Quality control
Apache spark
Versión del editor
Derechos
Atribución 4.0 Internacional (CC BY 4.0)
ISSN
2169-3536