Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Annotated Dataset for Anomaly Detection in a Data Center with IoT Sensors

Thumbnail
Ver/Abrir
L.Vigoya_Annotated_Dataset_for_Anomaly_Detection_in_a_Data_Center_with_IoT_Sensors_2020.pdf (1016.Kb)
Use este enlace para citar
http://hdl.handle.net/2183/26067
Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Annotated Dataset for Anomaly Detection in a Data Center with IoT Sensors
Autor(es)
Vigoya, Laura
Fernández, Diego
Carneiro, Víctor
Cacheda, Fidel
Fecha
2020-07-04
Cita bibliográfica
Vigoya, L.; Fernandez, D.; Carneiro, V.; Cacheda, F. Annotated Dataset for Anomaly Detection in a Data Center with IoT Sensors. Sensors 2020, 20, 3745. https://doi.org/10.3390/s20133745
Resumen
[Abstract] The relative simplicity of IoT networks extends service vulnerabilities and possibilities to different network failures exhibiting system weaknesses. Therefore, having a dataset with a sufficient number of samples, labeled and with a systematic analysis, is essential in order to understand how these networks behave and detect traffic anomalies. This work presents DAD: a complete and labeled IoT dataset containing a reproduction of certain real-world behaviors as seen from the network. To approximate the dataset to a real environment, the data were obtained from a physical data center, with temperature sensors based on NFC smart passive sensor technology. Having carried out different approaches, performing mathematical modeling using time series was finally chosen. The virtual infrastructure necessary for the creation of the dataset is formed by five virtual machines, a MQTT broker and four client nodes, each of them with four sensors of the refrigeration units connected to the internal IoT network. DAD presents a seven day network activity with three types of anomalies: duplication, interception and modification on the MQTT message, spread over 5 days. Finally, a feature description is performed, so it can be used for the application of the various techniques of prediction or automatic classification.
Palabras clave
Dataset
IoT
Sensors
 
Versión del editor
https://doi.org/10.3390/s20133745
Derechos
Atribución 4.0 Internacional
ISSN
1424-8220
1424-8239
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias