Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

EEG Signal Processing with Separable Convolutional Neural Network for Automatic Scoring of Sleeping Stage

Thumbnail
Ver/abrir
Pazos_Alejandro_2020_EEG_signal_processing_separable_convolutional_neural_network.pdf (492.4Kb)
Use este enlace para citar
http://hdl.handle.net/2183/25954
Atribución-NoComercial-SinDerivadas 4.0 Interancional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 4.0 Interancional
Coleccións
  • Investigación (FIC) [1682]
Metadatos
Mostrar o rexistro completo do ítem
Título
EEG Signal Processing with Separable Convolutional Neural Network for Automatic Scoring of Sleeping Stage
Autor(es)
Fernández-Blanco, Enrique
Rivero, Daniel
Pazos, A.
Data
2020-06-01
Cita bibliográfica
Fernandez-Blanco E, Rivero D, Pazos A. EEG signal processing with separable convolutional neural network for automatic scoring of sleeping stage. Neurocomputing. 2020; 410:220-228
Resumo
[Abstract] Nowadays, among the Deep Learning works, there is a tendency to develop networks with millions of trainable parameters. However, this tendency has two main drawbacks: overfitting and resource consumption due to the low-quality features extracted by those networks. This paper presents a study focused on the scoring of sleeping EEG signals to measure if the increase of the pressure on the features due to a reduction of the number though different techniques results in a benefit. The work also studies the convenience of increasing the number of input signals in order to allow the network to extract better features. Additionally, it might be highlighted that the presented model achieves comparable results to the state-of-the-art with 1000 times less trainable and the presented model uses the whole dataset instead of the simplified versions in the published literature.
Palabras chave
Convolutional neural networks
Deep learning
EEG
Signal processing
Sleep scoring
 
Versión do editor
https://doi.org/10.1016/j.neucom.2020.05.085
Dereitos
Atribución-NoComercial-SinDerivadas 4.0 Interancional
ISSN
0925-2312

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións