Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

EEG Signal Processing with Separable Convolutional Neural Network for Automatic Scoring of Sleeping Stage

Thumbnail
View/Open
Pazos_Alejandro_2020_EEG_signal_processing_separable_convolutional_neural_network.pdf (492.4Kb)
Use this link to cite
http://hdl.handle.net/2183/25954
Atribución-NoComercial-SinDerivadas 4.0 Interancional
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 4.0 Interancional
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
EEG Signal Processing with Separable Convolutional Neural Network for Automatic Scoring of Sleeping Stage
Author(s)
Fernández-Blanco, Enrique
Rivero, Daniel
Pazos, A.
Date
2020-06-01
Citation
Fernandez-Blanco E, Rivero D, Pazos A. EEG signal processing with separable convolutional neural network for automatic scoring of sleeping stage. Neurocomputing. 2020; 410:220-228
Abstract
[Abstract] Nowadays, among the Deep Learning works, there is a tendency to develop networks with millions of trainable parameters. However, this tendency has two main drawbacks: overfitting and resource consumption due to the low-quality features extracted by those networks. This paper presents a study focused on the scoring of sleeping EEG signals to measure if the increase of the pressure on the features due to a reduction of the number though different techniques results in a benefit. The work also studies the convenience of increasing the number of input signals in order to allow the network to extract better features. Additionally, it might be highlighted that the presented model achieves comparable results to the state-of-the-art with 1000 times less trainable and the presented model uses the whole dataset instead of the simplified versions in the published literature.
Keywords
Convolutional neural networks
Deep learning
EEG
Signal processing
Sleep scoring
 
Editor version
https://doi.org/10.1016/j.neucom.2020.05.085
Rights
Atribución-NoComercial-SinDerivadas 4.0 Interancional
ISSN
0925-2312

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback