Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (38ª. 2017. Gijón)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (38ª. 2017. Gijón)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Control of a robotic arm for transporting objects based on neuro-fuzzy learning visual information

Thumbnail
View/Open
2017_Hernandez_Vicen_Control_of_a_robotic_arm_for_transporting_objects.pdf (2.752Mb)
Use this link to cite
http://hdl.handle.net/2183/25919
Atribución-NoComercial-CompartirIgual 4.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 España
Collections
  • Jornadas de Automática (38ª. 2017. Gijón) [144]
Metadata
Show full item record
Title
Control of a robotic arm for transporting objects based on neuro-fuzzy learning visual information
Author(s)
Hernández Vicén, Juan
García, Juan Miguel
Martínez, Santiago
Balaguer, Carlos
Date
2017
Citation
Hernández Vicén, J., García, J. M., Martínez, S., Balaguer, C. Control of a robotic arm for transporting objects based on neuro-fuzzy learning visual information. En Actas de las XXXVIII Jornadas de Automática, Gijón, 6-8 de Septiembre de 2017 (pp.760-765). DOI capítulo: https://doi.org/10.17979/spudc.9788497497749.0760 DOI libro: https://doi.org/10.17979/spudc.9788497497749
Versions
http://hdl.handle.net/10651/46864
Abstract
[Abstract] New applications related to robotic manipulation or transportation tasks, with or without physical grasping are being developed. To perform these activities di erent kind of perceptions are need. One of the key perceptions in robotics is vision. However, camera-based systems have inherent errors which a ect the quality of the information obtained. Image distortion slows down information processing and defers data availability to last processing stages, decreasing performance. In this paper, a new approach to correct diverse sources of visual distortions on images in early stages of the data processing is proposed. The goal of the proposed system/algorithm is the computation of the tilt angle of an object transported by a robot. After capturing the image, the computing system extracts the angle using a Fuzzy Filter that corrects all distortions at only one processing step. This filter has been developed by means of Neuro-Fuzzy learning techniques, using data obtained from real experiments. In this way, computing time can be decreased and the performance of the robotic application can be increased. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator).
Keywords
Humanoid
Robots
Non-grasping manipulation
ANFIS
NeuroFuzzy
Filter
 
Editor version
https://doi.org/10.17979/spudc.9788497497749.0760
Rights
Atribución-NoComercial-CompartirIgual 4.0 España
ISBN
978-84-16664-74-0 (UOV)
 
978-84-9749-774-9 (UDC electrónico)
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback