Oculus-Crawl, a software tool for building datasets for computer vision tasks

Use este enlace para citar
http://hdl.handle.net/2183/25870
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 España
Colecciones
Metadatos
Mostrar el registro completo del ítemTítulo
Oculus-Crawl, a software tool for building datasets for computer vision tasksFecha
2017Cita bibliográfica
Paz Centeno, I., Fidalgo, E., Alegre Gutiérrez, E., Al-Nabki, M. W. Oculus-Crawl, a software tool for building datasets for computer vision tasks. En Actas de las XXXVIII Jornadas de Automática, Gijón, 6-8 de Septiembre de 2017 (pp.991-998). DOI capítulo: https://doi.org/10.17979/spudc.9788497497749.0991 DOI libro: https://doi.org/10.17979/spudc.9788497497749
Resumen
[Abstract] Building datasets for computer vision tasks require a source of a large number of images, like the ones provided by the Internet search engines, joined with automated scraping tools, to construct them in a reasonable time. In this paper it is presented Oculus-Crawl, a tool designed to crawl and scrape images from the search engines Google and Yahoo Images to build datasets of pictures, that is modular, scalable and portable. It is also discussed a benchmark for this crawler and an internal feature for storing and sharing big datasets, that makes it suitable for computer vision and machine learning tasks. In our tests we were able to crawl and fetch 11.555 images in less than 14 minutes, including also their meta-data description, showing that it might be well-suited for retrieving large datasets.
Palabras clave
Crawler
Search engine
Dataset
Images
Computer vision
Search engine
Dataset
Images
Computer vision
Versión del editor
Derechos
Atribución-NoComercial-CompartirIgual 4.0 España
ISBN
978-8416664-74-0 (UOV) 978-84-9749-774-9 (UDC electrónico)