Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Blended Artificial Intelligence Approach for Spectral Classification of Stars in Massive Astronomical Surveys

Thumbnail
Ver/Abrir
C.Dafonte_A Blended_Artificial_Intelligence_Approach_for_Spectral_Classification_of_Stars_2020.pdf (1.125Mb)
Use este enlace para citar
http://hdl.handle.net/2183/25543
Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
A Blended Artificial Intelligence Approach for Spectral Classification of Stars in Massive Astronomical Surveys
Autor(es)
Dafonte, Carlos
Rodríguez, Alejandra
Manteiga, Minia
Gómez García, Ángel
Arcay, Bernardino
Fecha
2020-05-01
Cita bibliográfica
Dafonte, C.; Rodríguez, A.; Manteiga, M.; Gómez, Á.; Arcay, B. A Blended Artificial Intelligence Approach for Spectral Classification of Stars in Massive Astronomical Surveys. Entropy 2020, 22, 518. https://doi.org/10.3390/e22050518
Resumen
[Abstract] This paper analyzes and compares the sensitivity and suitability of several artificial intelligence techniques applied to the Morgan–Keenan (MK) system for the classification of stars. The MK system is based on a sequence of spectral prototypes that allows classifying stars according to their effective temperature and luminosity through the study of their optical stellar spectra. Here, we include the method description and the results achieved by the different intelligent models developed thus far in our ongoing stellar classification project: fuzzy knowledge-based systems, backpropagation, radial basis function (RBF) and Kohonen artificial neural networks. Since one of today’s major challenges in this area of astrophysics is the exploitation of large terrestrial and space databases, we propose a final hybrid system that integrates the best intelligent techniques, automatically collects the most important spectral features, and determines the spectral type and luminosity level of the stars according to the MK standard system. This hybrid approach truly emulates the behavior of human experts in this area, resulting in higher success rates than any of the individual implemented techniques. In the final classification system, the most suitable methods are selected for each individual spectrum, which implies a remarkable contribution to the automatic classification process.
Palabras clave
Hybrid systems
MK classification
Spectral features
Astronomical databases
Artificial neural networks
 
Versión del editor
https://doi.org/10.3390/e22050518
Derechos
Atribución 4.0 Internacional
ISSN
1099-4300

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias