Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative study of imputation algorithms applied to the prediction of student performance

Thumbnail
Ver/Abrir
2020_Cespo_Turrado_Concepcion_Comparative_Study_Imputation_Algorithms.pdf (309.9Kb)
Use este enlace para citar
http://hdl.handle.net/2183/25256
Creative Commons CC BY license
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons CC BY license
Colecciones
  • Investigación (EPEF) [590]
Metadatos
Mostrar el registro completo del ítem
Título
Comparative study of imputation algorithms applied to the prediction of student performance
Autor(es)
Crespo Turrado, Concepción
Casteleiro-Roca, José-Luis
Sánchez Lasheras, Fernando
López-Vázquez, José-Antonio
De Cos Juez, Francisco Javier
Pérez Castelo, Francisco Javier
Calvo-Rolle, José Luis
Corchado, Emilio
Fecha
2019-12-27
Cita bibliográfica
Concepción Crespo-Turrado, José Luis Casteleiro-Roca, Fernando Sánchez-Lasheras, José Antonio López-Vázquez, Francisco Javier De Cos Juez, Francisco Javier Pérez Castelo, José Luis Calvo-Rolle, Emilio Corchado, Comparative Study of Imputation Algorithms Applied to the Prediction of Student Performance, Logic Journal of the IGPL, Volume 28, Issue 1, February 2020, Pages 58–70, https://doi.org/10.1093/jigpal/jzz071
Resumen
[Abstract]: Student performance and its evaluation remain a serious challenge for education systems. Frequently, the recording and processing of students’ scores in a specific curriculum have several f laws for various reasons. In this context, the absence of data from some of the student scores undermines the efficiency of any future analysis carried out in order to reach conclusions. When this is the case, missing data imputation algorithms are needed. These algorithms are capable of substituting, with a high level of accuracy, the missing data for predicted values. This research presents the hybridization of an algorithm previously proposed by the authors called adaptive assignation algorithm (AAA), with a well-known technique called multivariate imputation by chained equations (MICE). The results show how the suggested methodology outperforms both algorithms.
Palabras clave
Student performance
Data imputation
MARS
MICE
AAA
 
Derechos
Creative Commons CC BY license
ISSN
1367-0751

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias