Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative study of imputation algorithms applied to the prediction of student performance

Thumbnail
View/Open
2020_Cespo_Turrado_Concepcion_Comparative_Study_Imputation_Algorithms.pdf (309.9Kb)
Use this link to cite
http://hdl.handle.net/2183/25256
Creative Commons CC BY license
Except where otherwise noted, this item's license is described as Creative Commons CC BY license
Collections
  • Investigación (EPEF) [590]
Metadata
Show full item record
Title
Comparative study of imputation algorithms applied to the prediction of student performance
Author(s)
Crespo Turrado, Concepción
Casteleiro-Roca, José-Luis
Sánchez Lasheras, Fernando
López-Vázquez, José-Antonio
De Cos Juez, Francisco Javier
Pérez Castelo, Francisco Javier
Calvo-Rolle, José Luis
Corchado, Emilio
Date
2019-12-27
Citation
Concepción Crespo-Turrado, José Luis Casteleiro-Roca, Fernando Sánchez-Lasheras, José Antonio López-Vázquez, Francisco Javier De Cos Juez, Francisco Javier Pérez Castelo, José Luis Calvo-Rolle, Emilio Corchado, Comparative Study of Imputation Algorithms Applied to the Prediction of Student Performance, Logic Journal of the IGPL, Volume 28, Issue 1, February 2020, Pages 58–70, https://doi.org/10.1093/jigpal/jzz071
Abstract
[Abstract]: Student performance and its evaluation remain a serious challenge for education systems. Frequently, the recording and processing of students’ scores in a specific curriculum have several f laws for various reasons. In this context, the absence of data from some of the student scores undermines the efficiency of any future analysis carried out in order to reach conclusions. When this is the case, missing data imputation algorithms are needed. These algorithms are capable of substituting, with a high level of accuracy, the missing data for predicted values. This research presents the hybridization of an algorithm previously proposed by the authors called adaptive assignation algorithm (AAA), with a well-known technique called multivariate imputation by chained equations (MICE). The results show how the suggested methodology outperforms both algorithms.
Keywords
Student performance
Data imputation
MARS
MICE
AAA
 
Rights
Creative Commons CC BY license
ISSN
1367-0751

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback