Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Cosimulation of Multibody Systems and Hydraulic Dynamics

Thumbnail
View/Open
Rahikainen2020_Article_OnTheCosimulationOfMultibodySy.pdf (1.513Mb)
Use this link to cite
http://hdl.handle.net/2183/25050
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Investigación (EPEF) [592]
Metadata
Show full item record
Title
On the Cosimulation of Multibody Systems and Hydraulic Dynamics
Author(s)
Rahikainen, Jarkko
González Varela, Francisco Javier
Naya, Miguel A.
Sopanen, Jussi
Date
2020-02
Citation
Rahikainen, J., González, F., Naya, M.Á. et al. On the cosimulation of multibody systems and hydraulic dynamics. Multibody Syst Dyn 50, 143–167 (2020). https://doi.org/10.1007/s11044-020-09727-z
Abstract
[Abstract] The simulation of mechanical devices using multibody system dynamics (MBS) algorithms frequently requires the consideration of their interaction with components of a different physical nature, such as electronics, hydraulics, or thermodynamics. An increasingly popular way to perform this task is through co-simulation, that is, assigning a tailored formulation and solver to each subsystem in the application under study and then coupling their integration processes via the discrete-time exchange of coupling variables during runtime. Co-simulation makes it possible to deal with complex engineering applications in a modular and effective way. On the other hand, subsystem coupling can be carried out in a wide variety of ways, which brings about the need to select appropriate coupling schemes and simulation options to ensure that the numerical integration remains stable and accurate. In this work, the co-simulation of hydraulically actuated mechanical systems via noniterative, Jacobi-scheme co-simulation is addressed. The effect of selecting different co-simulation configuration options and parameters on the accuracy and stability of the numerical integration was assessed by means of representative numerical examples.
Keywords
Co-simulation
Multibody system dynamics
Hydraulic dynamics
Multiphysics
Benchmarking
 
Editor version
https://doi.org/10.1007/s11044-020-09727-z
Rights
Atribución 4.0 Internacional

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback