Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved Compressed String Dictionaries

Thumbnail
View/Open
Nieves.R.Brisaboa_Improved_Compressed_String_Dictionaries_2019.pdf (840.5Kb)
Use this link to cite
http://hdl.handle.net/2183/24435
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
Improved Compressed String Dictionaries
Alternative Title(s)
CIKM '19 Proceedings of the 28th ACM International Conference on Information and Knowledge Management
Author(s)
Brisaboa, Nieves R.
Cerdeira-Pena, Ana
Bernardo, Guillermo de
Navarro, Gonzalo
Date
2019-11-03
Citation
Brisaboa, Nieves R., et al. Improved Compressed String Dictionaries. En Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, 2019. p. 29-38. Doi: 10.1145/3357384.3357972
Abstract
[Abstract] We introduce a new family of compressed data structures to efficiently store and query large string dictionaries in main memory. Our main technique is a combination of hierarchical Front-coding with ideas from longest-common-prefix computation in suffix arrays. Our data structures yield relevant space-time tradeoffs in real-world dictionaries. We focus on two domains where string dictionaries are extensively used and efficient compression is required: URL collections, a key element in Web graphs and applications such as Web mining; and collections of URIs and literals, the basic components of RDF datasets. Our experiments show that our data structures achieve better compression than the state-of-the-art alternatives while providing very competitive query times.
Keywords
Compression
Data structures
String dictionaries
 
Editor version
https://doi.org/10.1145/3357384.3357972

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback