Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance

Thumbnail
View/Open
P.Fraga-Lamas_2019_A_Review_on_IoT_Deep_Learning_UAV_Systems_for_Autonomous.pdf (3.108Mb)
Use this link to cite
http://hdl.handle.net/2183/24021
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • Investigación (FIC) [1679]
Metadata
Show full item record
Title
A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance
Author(s)
Fraga-Lamas, Paula
Ramos, Lucía
Mondéjar-Guerra, Víctor
Fernández-Caramés, Tiago M.
Date
2019-09-14
Citation
Fraga-Lamas, P.; Ramos, L.; Mondéjar-Guerra, V.; Fernández-Caramés, T.M. A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance. Remote Sens. 2019, 11, 2144.
Abstract
[Abstract] Advances in Unmanned Aerial Vehicles (UAVs), also known as drones, offer unprecedented opportunities to boost a wide array of large-scale Internet of Things (IoT) applications. Nevertheless, UAV platforms still face important limitations mainly related to autonomy and weight that impact their remote sensing capabilities when capturing and processing the data required for developing autonomous and robust real-time obstacle detection and avoidance systems. In this regard, Deep Learning (DL) techniques have arisen as a promising alternative for improving real-time obstacle detection and collision avoidance for highly autonomous UAVs. This article reviews the most recent developments on DL Unmanned Aerial Systems (UASs) and provides a detailed explanation on the main DL techniques. Moreover, the latest DL-UAV communication architectures are studied and their most common hardware is analyzed. Furthermore, this article enumerates the most relevant open challenges for current DL-UAV solutions, thus allowing future researchers to define a roadmap for devising the new generation affordable autonomous DL-UAV IoT solutions.
Keywords
UAV
Drones
Autonomous UAV
UAS
Remote sensing
Deep learning
Image processing
Large-scale datasets
Collision avoidance
Obstacle detection
 
Editor version
https://doi.org/10.3390/rs11182144
Rights
Atribución 3.0 España
ISSN
2072-4292

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback