Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact of Digital Video Analytics on Accuracy of Chemobehavioural Phenotyping in Aquatic Toxicology

Thumbnail
Ver/Abrir
J.Henry_2019_Impact_of_digital_video_analytics_on_accuracy_of_chemobehavioural_phenotyping_in_aquatic_toxicology.pdf (4.809Mb)
Use este enlace para citar
http://hdl.handle.net/2183/23993
Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España
Colecciones
  • Investigación (FIC) [1679]
Metadatos
Mostrar el registro completo del ítem
Título
Impact of Digital Video Analytics on Accuracy of Chemobehavioural Phenotyping in Aquatic Toxicology
Autor(es)
Henry, Jason
Rodriguez, Alvaro
Wlodkowic​, Donald
Fecha
2019-08-05
Cita bibliográfica
Henry J, Rodriguez A, Wlodkowic D. 2019. Impact of digital video analytics on accuracy of chemobehavioural phenotyping in aquatic toxicology. PeerJ 7:e7367 https://doi.org/10.7717/peerj.7367
Resumen
[Abstract] Chemobehavioural phenotypic analysis using small aquatic model organisms is becoming an important toolbox in aquatic ecotoxicology and neuroactive drug discovery. The analysis of the organisms’ behavior is usually performed by combining digital video recording with animal tracking software. This software detects the organisms in the video frames, and reconstructs their movement trajectory using image processing algorithms. In this work we investigated the impact of video file characteristics, video optimization techniques and differences in animal tracking algorithms on the accuracy of quantitative neurobehavioural endpoints. We employed larval stages of a free-swimming euryhaline crustacean Artemia franciscana,commonly used for marine ecotoxicity testing, as a proxy modelto assess the effects of video analytics on quantitative behavioural parameters. We evaluated parameters such as data processing speed, tracking precision, capability to perform high-throughput batch processing of video files. Using a model toxicant the software algorithms were also finally benchmarked against one another. Our data indicates that variability in video file parameters; such as resolution, frame rate, file containers types, codecs and compression levels, can be a source of experimental biases in behavioural analysis. Similarly, the variability in data outputs between different tracking algorithms should be taken into account when designing standardized behavioral experiments and conducting chemobehavioural phenotyping.
Palabras clave
Animal behavior
Zoology
Ecotoxicology
Tracking
Video
Toxicity
Phenomics
 
Versión del editor
https://doi.org/10.7717/peerj.7367
Derechos
Atribución 3.0 España
ISSN
2167-8359
2376-5992
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias