Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gene Signatures Research Involved in Cancer Using Machine Learning

Thumbnail
Ver/Abrir
J.Liñares-Blanco_2019_Gene_Signatures_Research_Involved_in_Cancer_Using_Machine_Learning.pdf (201.3Kb)
Use este enlace para citar
http://hdl.handle.net/2183/23937
Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Gene Signatures Research Involved in Cancer Using Machine Learning
Autor(es)
Liñares Blanco, Jose
Fernández-Lozano, Carlos
Fecha
2019
Cita bibliográfica
Liñares-Blanco, J.; Fernandez-Lozano, C. Gene Signatures Research Involved in Cancer Using Machine Learning. Proceedings 2019, 21, 19.
Resumen
[Abstract] With the cheapening of mass sequencing techniques and the rise of computer technologies, capable of analyzing a huge amount of data, it is necessary nowadays that both branches mutually benefit. Transcriptomics, in this case, is a branch of biology focused on the study of mRNA molecules, among others. The quantification of these molecules gives us information about the expression that a gene is having at a given moment. Having information on the expression of the approximately 20,000 genes harbored by human beings is a really useful source of information for the study of certain conditions and/or pathologies. In this work, patient expression -omic data data have been used to offer a new analysis methodology through Machine Learning. The results of this methodology were compared with a conventional methodology to observe how they differed and how they resembled each other. These techniques, therefore, offer a new mechanism for the search of genetic signatures involved, in this case, with cancer.
Palabras clave
Machine learning
Cancer
Transcriptomics
TCGA
RNA-Seq
 
Versión del editor
https://doi.org/10.3390/proceedings2019021019
Derechos
Atribución 3.0 España
ISSN
2504-3900

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias