Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Machine Learning Solution for Distributed Environments and Edge Computing

Thumbnail
Ver/Abrir
J.Penas-Noce_2019_A_Machine_Learning_Solution_for_Distributed_Environments.pdf (150.9Kb)
Use este enlace para citar
http://hdl.handle.net/2183/23921
Atribución 4.0 Internacional (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0)
Colecciones
  • Investigación (FIC) [1679]
Metadatos
Mostrar el registro completo del ítem
Título
A Machine Learning Solution for Distributed Environments and Edge Computing
Autor(es)
Penas-Noce, Javier
Fontenla-Romero, Óscar
Guijarro-Berdiñas, Bertha
Fecha
2019-08-09
Cita bibliográfica
Penas-Noce, J.; Fontenla-Romero, Ó.; Guijarro-Berdiñas, B. A Machine Learning Solution for Distributed Environments and Edge Computing. Proceedings 2019, 21, 47. https://doi.org/10.3390/proceedings2019021047
Resumen
[Abstract] In a society in which information is a cornerstone the exploding of data is crucial. Thinking of the Internet of Things, we need systems able to learn from massive data and, at the same time, being inexpensive and of reduced size. Moreover, they should operate in a distributed manner making use of edge computing capabilities while preserving local data privacy. The aim of this work is to provide a solution offering all these features by implementing the algorithm LANN-DSVD over a cluster of Raspberry Pi devices. In this system, every node first learns locally a one-layer neural network. Later on, they share the weights of these local networks to combine them into a global net that is finally used at every node. Results demonstrate the benefits of the proposed system.
Palabras clave
Machine learning
Distributed learning
Artificial neural networks
Big Data
Privacy-preserving
Internet of things
Edge computing
Raspberry
TensorFlow
 
Versión del editor
https://doi.org/10.3390/proceedings2019021047
Derechos
Atribución 4.0 Internacional (CC BY 4.0)
ISSN
2504-3900

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias