Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Técnica Superior de Náutica e Máquinas
  • Investigación (ETSNM)
  • View Item
  •   DSpace Home
  • Escola Técnica Superior de Náutica e Máquinas
  • Investigación (ETSNM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Eco-friendly Pressure Drop Dehumidifier: An Experimental and Numerical Analysis

Thumbnail
View/Open
Costa_AngelM_2019_su11072170.pdf.pdf (4.131Mb)
Use this link to cite
http://hdl.handle.net/2183/23282
Atribución 4.0 (CC BY)
Except where otherwise noted, this item's license is described as Atribución 4.0 (CC BY)
Collections
  • Investigación (ETSNM) [84]
Metadata
Show full item record
Title
Eco-friendly Pressure Drop Dehumidifier: An Experimental and Numerical Analysis
Author(s)
Costa, Ángel M.
Bouzón, Rebeca
Vergara, Diego
Orosa, José A.
Date
2019
Citation
Costa, Á.M.; Bouzón, R.; Vergara, D.; Orosa, J.A. Eco-friendly Pressure Drop Dehumidifier: An Experimental and Numerical Analysis. Sustainability 2019, 11, 2170. https://doi.org/10.3390/su11072170
Abstract
[Abstract] The northwest of Spain is defined by very high relative humidity values, with an average relative humidity of 85% throughout the year, which is considered too high by most standards and therefore can be related to various health problems and fungi growth. To reduce the relative humidity level in the indoor environment, different dehumidification technologies are being employed. However, commonly employed cooling based dehumidification systems have a very high energy consumption, from 720 W in residential buildings to 3150 W in industrial buildings. This article aims to show a new method for indoor moist air dehumidification, based on a controlled adiabatic expansion of moist air, similar to the Foehn effect, by means of a nozzle–diffuser system. The main results, based on computational fluid dynamics (CFD) simulations and experimental tests in wind tunnels, show an initial working range of up to 80% relative humidity, with almost ten times reduction in energy consumption compared to the classical mechanical refrigeration dehumidifiers. Moreover, future improvements, such as a Peltier cooling system, which allows a reduction of the temperature in the nozzle throat, improving the condensation process, and a variable inlet area, could potentially improve the working range towards the required 30–60% relative humidity in buildings.
Keywords
Dehumidifier
Energy consumption
CFD
Nozzle
 
Editor version
https://doi.org/10.3390/su11072170
Rights
Atribución 4.0 (CC BY)
ISSN
2071-1050

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback