Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Servet: A Benchmark Suite for Autotuning on Multicore Clusters

Thumbnail
Ver/Abrir
J_Gonzalez_Dominguez_Servet_A_Benchmark_Suite_for_Autotuning_on_Multicore_Clusters_2010.pdf (599.3Kb)
Use este enlace para citar
http://hdl.handle.net/2183/22670
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Servet: A Benchmark Suite for Autotuning on Multicore Clusters
Autor(es)
González-Domínguez, Jorge
Taboada, Guillermo L.
Fraguela, Basilio B.
Martín, María J.
Touriño, Juan
Fecha
2010-05-24
Cita bibliográfica
GONZÁLEZ-DOMÍNGUEZ, Jorge, et al. Servet: A benchmark suite for autotuning on multicore clusters. En 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS). IEEE, 2010. p. 1-9.
Resumen
[Abstract] MapReduce is a powerful tool for processing large data sets used by many applications running in distributed environments. However, despite the increasing number of computationally intensive problems that require low-latency communications, the adoption of MapReduce in High Performance Computing (HPC) is still emerging. Here languages based on the Partitioned Global Address Space (PGAS) programming model have shown to be a good choice for implementing parallel applications, in order to take advantage of the increasing number of cores per node and the programmability benefits achieved by their global memory view, such as the transparent access to remote data. This paper presents the first PGAS-based MapReduce implementation that uses the Unified Parallel C (UPC) language, which (1) obtains programmability benefits in parallel programming, (2) offers advanced configuration options to define a customized load distribution for different codes, and (3) overcomes performance penalties and bottlenecks that have traditionally prevented the deployment of MapReduce applications in HPC. The performance evaluation of representative applications on shared and distributed memory environments assesses the scalability of the presented MapReduce framework, confirming its suitability.
Palabras clave
Multicore processing
Hardware
Computer architecture
Delay
Parameter estimation
Libraries
Bandwidth
Clustering
Algorithms
Parallel processing
Parallel architectures
 
Descripción
This is a post-peer-review, pre-copyedit version of an article published in 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS). Proceedings. The final authenticated version is available online at: http://dx.doi.org/10.1109/IPDPS.2010.5470358.
Versión del editor
http://dx.doi.org/10.1109/IPDPS.2010.5470358

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias