Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental Study and ANN Dual-Time Scale Perturbation Model of Electrokinetic Properties of Microbiota

Thumbnail
Ver/abrir
Liu_Experimental.pdf (1.174Mb)
Use este enlace para citar
http://hdl.handle.net/2183/22489
Atribución 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 3.0 España
Coleccións
  • Investigación (FIC) [1685]
Metadatos
Mostrar o rexistro completo do ítem
Título
Experimental Study and ANN Dual-Time Scale Perturbation Model of Electrokinetic Properties of Microbiota
Autor(es)
Liu, Yong
Munteanu, Cristian-Robert
Fernández-Lozano, Carlos
Pazos, A.
Ran, Tao
Tan, Zhiliang
Zhou, Chuanshe
Tang, Shaoxun
González-Díaz, Humberto
Data
2017-06-30
Cita bibliográfica
Liu Y, Munteanu CR, Fernandez-Lozano C, Pazos A, Ran T, Tan Z, Yu Y, Zhou C, Tang S and González-Díaz H (2017) Experimental Study and ANN Dual-Time Scale Perturbation Model of Electrokinetic Properties of Microbiota. Front. Microbiol. 8:1216nlm journals
Resumo
[Abstract] The electrokinetic properties of the rumen microbiota are involved in cell surface adhesion and microbial metabolism. An in vitro study was carried out in batch culture to determine the effects of three levels of special surface area (SSA) of biomaterials and four levels of surface tension (ST) of culture medium on electrokinetic properties (Zeta potential, ξ; electrokinetic mobility, μe), fermentation parameters (volatile fatty acids, VFAs), and ST over fermentation processes (ST-a, γ). The obtained results were combined with previously published data (digestibility, D; pH; concentration of ammonia nitrogen, c(NH3-N)) to establish a predictive artificial neural network (ANN) model. Concepts of dual-time series analysis, perturbation theory (PT), and Box-Jenkins Operators were applied for the first time to develop an ANN model to predict the variations of the electrokinetic properties of microbiota. The best dual-time series Radial Basis Functions (RBR) model for ξ of rumen microbiota predicted ξ for >30,000 cases with a correlation coefficient >0.8. This model provided insight into the correlations between electrokinetic property (zeta potential) of rumen microbiota and the perturbations of physical factors (specific surface area and surface tension) of media, digestibility of substrate, and their metabolites (NH3-N, VFAs) in relation to environmental factors.
Palabras chave
Electrokinetic properties
Zeta potential
Artificial neural networks
Perturbation theory
Predictive model
Ruminal microbiome
 
Versión do editor
https://dx.doi.org/10.3389%2Ffmicb.2017.01216
Dereitos
Atribución 3.0 España
ISSN
1664-302X

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións