Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental Study and ANN Dual-Time Scale Perturbation Model of Electrokinetic Properties of Microbiota

Thumbnail
Ver/Abrir
Liu_Experimental.pdf (1.174Mb)
Use este enlace para citar
http://hdl.handle.net/2183/22489
Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Experimental Study and ANN Dual-Time Scale Perturbation Model of Electrokinetic Properties of Microbiota
Autor(es)
Liu, Yong
Munteanu, Cristian-Robert
Fernández-Lozano, Carlos
Pazos, A.
Ran, Tao
Tan, Zhiliang
Zhou, Chuanshe
Tang, Shaoxun
González-Díaz, Humberto
Fecha
2017-06-30
Cita bibliográfica
Liu Y, Munteanu CR, Fernandez-Lozano C, Pazos A, Ran T, Tan Z, Yu Y, Zhou C, Tang S and González-Díaz H (2017) Experimental Study and ANN Dual-Time Scale Perturbation Model of Electrokinetic Properties of Microbiota. Front. Microbiol. 8:1216nlm journals
Resumen
[Abstract] The electrokinetic properties of the rumen microbiota are involved in cell surface adhesion and microbial metabolism. An in vitro study was carried out in batch culture to determine the effects of three levels of special surface area (SSA) of biomaterials and four levels of surface tension (ST) of culture medium on electrokinetic properties (Zeta potential, ξ; electrokinetic mobility, μe), fermentation parameters (volatile fatty acids, VFAs), and ST over fermentation processes (ST-a, γ). The obtained results were combined with previously published data (digestibility, D; pH; concentration of ammonia nitrogen, c(NH3-N)) to establish a predictive artificial neural network (ANN) model. Concepts of dual-time series analysis, perturbation theory (PT), and Box-Jenkins Operators were applied for the first time to develop an ANN model to predict the variations of the electrokinetic properties of microbiota. The best dual-time series Radial Basis Functions (RBR) model for ξ of rumen microbiota predicted ξ for >30,000 cases with a correlation coefficient >0.8. This model provided insight into the correlations between electrokinetic property (zeta potential) of rumen microbiota and the perturbations of physical factors (specific surface area and surface tension) of media, digestibility of substrate, and their metabolites (NH3-N, VFAs) in relation to environmental factors.
Palabras clave
Electrokinetic properties
Zeta potential
Artificial neural networks
Perturbation theory
Predictive model
Ruminal microbiome
 
Versión del editor
https://dx.doi.org/10.3389%2Ffmicb.2017.01216
Derechos
Atribución 3.0 España
ISSN
1664-302X

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias