Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Program Behavior Characterization Through Advanced Kernel Recognition

Thumbnail
Ver/Abrir
M.Arenaz_Program_Behavior_Characterization_Through_Advanced_Kernel_Recognition_2007.pdf (262.5Kb)
Use este enlace para citar
http://hdl.handle.net/2183/22417
Colecciones
  • Investigación (FIC) [1683]
Metadatos
Mostrar el registro completo del ítem
Título
Program Behavior Characterization Through Advanced Kernel Recognition
Autor(es)
Arenaz Silva, Manuel
Touriño, Juan
Doallo, Ramón
Fecha
2007
Cita bibliográfica
Arenaz M., Touriño J., Doallo R. (2007) Program Behavior Characterization Through Advanced Kernel Recognition. In: Kermarrec AM., Bougé L., Priol T. (eds) Euro-Par 2007 Parallel Processing. Euro-Par 2007. Lecture Notes in Computer Science, vol 4641. Springer, Berlin, Heidelberg
Resumen
[Abstract] Understanding program behavior is at the foundation of program optimization. Techniques for automatic recognition of program constructs (from now on, computational kernels) characterize the behavior of program statements, providing compilers with valuable information to to guide code optimization. Our goal is to develop automatic techniques that summarize the behavior of full-scale real applications by building a high-level representation that hides the complexity of implementation details. The first step towards this goal is the description of applications in terms of computational kernels such as induction variables, reductions, and array recurrences. To this end we use XARK, a compiler framework that recognizes a comprehensive collection of frequently used kernels. This paper presents detailed experiments that describe several benchmarks from different application domains in terms of the kernels recognized by XARK. More specifically, the SparsKit-II library for the manipulation of sparse matrices, the Perfect benchmarks, the SPEC CPU2000 collection and the PLTMG package for solving elliptic partial differential equations are characterized in detail.
Palabras clave
Automatic recognition of program constructs
Computational kernels
XARK
 
Descripción
This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science. The final authenticated version is available online at: https://doi.org/10.1007/978-3-540-74466-5_27
Versión del editor
https://doi.org/10.1007/978-3-540-74466-5_27
ISSN
0302-9743
1611-3349
 
ISBN
978-3-540-74465-8
 
978-3-540-74466-5
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias