Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Program Behavior Characterization Through Advanced Kernel Recognition

Thumbnail
View/Open
M.Arenaz_Program_Behavior_Characterization_Through_Advanced_Kernel_Recognition_2007.pdf (262.5Kb)
Use this link to cite
http://hdl.handle.net/2183/22417
Collections
  • Investigación (FIC) [1679]
Metadata
Show full item record
Title
Program Behavior Characterization Through Advanced Kernel Recognition
Author(s)
Arenaz Silva, Manuel
Touriño, Juan
Doallo, Ramón
Date
2007
Citation
Arenaz M., Touriño J., Doallo R. (2007) Program Behavior Characterization Through Advanced Kernel Recognition. In: Kermarrec AM., Bougé L., Priol T. (eds) Euro-Par 2007 Parallel Processing. Euro-Par 2007. Lecture Notes in Computer Science, vol 4641. Springer, Berlin, Heidelberg
Abstract
[Abstract] Understanding program behavior is at the foundation of program optimization. Techniques for automatic recognition of program constructs (from now on, computational kernels) characterize the behavior of program statements, providing compilers with valuable information to to guide code optimization. Our goal is to develop automatic techniques that summarize the behavior of full-scale real applications by building a high-level representation that hides the complexity of implementation details. The first step towards this goal is the description of applications in terms of computational kernels such as induction variables, reductions, and array recurrences. To this end we use XARK, a compiler framework that recognizes a comprehensive collection of frequently used kernels. This paper presents detailed experiments that describe several benchmarks from different application domains in terms of the kernels recognized by XARK. More specifically, the SparsKit-II library for the manipulation of sparse matrices, the Perfect benchmarks, the SPEC CPU2000 collection and the PLTMG package for solving elliptic partial differential equations are characterized in detail.
Keywords
Automatic recognition of program constructs
Computational kernels
XARK
 
Description
This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science. The final authenticated version is available online at: https://doi.org/10.1007/978-3-540-74466-5_27
Editor version
https://doi.org/10.1007/978-3-540-74466-5_27
ISSN
0302-9743
1611-3349
 
ISBN
978-3-540-74465-8
 
978-3-540-74466-5
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback