Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Determination of Egg Storage Time at Room Temperature Using a Low-Cost NIR Spectrometer and Machine Learning Techniques

Thumbnail
Ver/abrir
CoronelReyes_Determination.pdf (1.050Mb)
Use este enlace para citar
http://hdl.handle.net/2183/21737
Atribución-NoComercial-SinDerivadas 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 3.0 España
Coleccións
  • Investigación (FIC) [1725]
Metadatos
Mostrar o rexistro completo do ítem
Título
Determination of Egg Storage Time at Room Temperature Using a Low-Cost NIR Spectrometer and Machine Learning Techniques
Autor(es)
Coronel-Reyes, Julián
Ramírez-Morales, Iván
Fernández-Blanco, Enrique
Rivero, Daniel
Pazos, A.
Data
2017-12-21
Cita bibliográfica
Coronel-Reyes J, Ramírez-Morales I, Fernández-Blanco E, et al. Determination of egg storage time at room temperature using a low-cost NIR spectrometer and machine learning techniques. Comput Electron Agric. 2018; 145: 1-10
Resumo
[Abstract] Currently, consumers are more concerned about freshness and quality of food. Poultry egg storage time is a freshness and quality indicator in industrial and consumer applications, even though egg marking is not always required outside the European Union. Other authors have already published works using expensive laboratory equipment in order to determine the storage time and freshness of eggs. This paper presents a novel alternative method based on low-cost devices for the rapid and non-destructive prediction of egg storage time at room temperature (23 ± 1 °C). H&N brown flock with 49-week-old hens were used as a source for the sampled eggs. Samples were scanned for a period of 22 days beginning from the time the egg was laid. The spectral acquisition was performed using a low-cost near-infrared reflectance (NIR) spectrometer which has a wavelength range between 740 nm and 1070 nm. The resulting dataset of 660 samples was randomly split according to a 10-fold cross-validation in order to be used in a contrast and optimization process of two machine learning algorithms. During the optimization, several models were tested to develop a robust calibration model. The best model used a Savitzky Golay pre-processing technique with a third derivative order and an artificial neural network with ten neurons in one hidden layer. Regressing the storage time of the eggs, tests achieved a coefficient of determination (R-squared) of 0.8319 ± 0.0377 and a root mean squared error in cross-validation test set (RMSECV) of 1.97 days. Although further work is needed, this technique shows industrial potential and consumer utility to determine an egg's freshness using a low-cost spectrometer connected to a smartphone.
Palabras chave
Non-destructive
Chemometrics
Freshness
Poultry
Neural networks
 
Versión do editor
https://doi.org/10.1016/j.compag.2017.12.030
Dereitos
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
0168-1699

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións