Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

BDEv 3.0: energy efficiency and microarchitectural characterization of Big Data processing frameworks

Thumbnail
Ver/Abrir
Jorge_Veiga_2018_BDEv_3.0_Energy_efficiency_and_microarchitectural_characterization_of_Big_Data_processing.pdf (688.4Kb)
Use este enlace para citar
http://hdl.handle.net/2183/21721
Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
  • Investigación (FIC) [1678]
Metadatos
Mostrar el registro completo del ítem
Título
BDEv 3.0: energy efficiency and microarchitectural characterization of Big Data processing frameworks
Autor(es)
Veiga, Jorge
Enes, Jonatan
Expósito, Roberto R.
Touriño, Juan
Fecha
2018-09
Cita bibliográfica
Jorge Veiga, Jonatan Enes, Roberto R. Expósito, Juan Touriño, BDEv 3.0: Energy efficiency and microarchitectural characterization of Big Data processing frameworks, Future Generation Computer Systems, Volume 86, 2018, Pages 565-581, ISSN 0167-739X, https://doi.org/10.1016/j.future.2018.04.030.
Resumen
[Abstract] As the size of Big Data workloads keeps increasing, the evaluation of distributed frameworks becomes a crucial task in order to identify potential performance bottlenecks that may delay the processing of large datasets. While most of the existing works generally focus only on execution time and resource utilization, analyzing other important metrics is key to fully understanding the behavior of these frameworks. For example, microarchitecture-level events can bring meaningful insights to characterize the interaction between frameworks and hardware. Moreover, energy consumption is also gaining increasing attention as systems scale to thousands of cores. This work discusses the current state of the art in evaluating distributed processing frameworks, while extending our Big Data Evaluator tool (BDEv) to extract energy efficiency and microarchitecture-level metrics from the execution of representative Big Data workloads. An experimental evaluation using BDEv demonstrates its usefulness to bring meaningful information from popular frameworks such as Hadoop, Spark and Flink.
Palabras clave
Big Data processing
Performance evaluation
Energy efficiency
Microarchitectural characterization
 
Descripción
This is a post-peer-review, pre-copyedit version of an article published in Future Generation Computer Systems. The final authenticated version is available online at: https://doi.org/10.1016/j.future.2018.04.030
Versión del editor
https://doi.org/10.1016/j.future.2018.04.030
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
0167-739X
1872-7115
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias