Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

UPCBLAS: a library for parallel matrix computations in Unified Parallel C

Thumbnail
Ver/Abrir
Jorge_González-Domínguez_2012_UPCBLAS_a_library_for_parallel_matrix_computations_in_Unified_Parallel.pdf (558.1Kb)
Use este enlace para citar
http://hdl.handle.net/2183/21712
Colecciones
  • Investigación (FIC) [1679]
Metadatos
Mostrar el registro completo del ítem
Título
UPCBLAS: a library for parallel matrix computations in Unified Parallel C
Autor(es)
González-Domínguez, Jorge
Martín, María J.
Taboada, Guillermo L.
Touriño, Juan
Doallo, Ramón
Mallón, Damián A.
Wibecan, Brian
Fecha
2012-09-25
Cita bibliográfica
González‐Domínguez, J. , Martín, M. J., Taboada, G. L., Touriño, J. , Doallo, R. , Mallón, D. A. and Wibecan, B. (2012), UPCBLAS: a library for parallel matrix computations in Unified Parallel C. Concurrency Computat.: Pract. Exper., 24: 1645-1667. doi:10.1002/cpe.1914
Resumen
[Abstract] The popularity of Partitioned Global Address Space (PGAS) languages has increased during the last years thanks to their high programmability and performance through an efficient exploitation of data locality, especially on hierarchical architectures such as multicore clusters. This paper describes UPCBLAS, a parallel numerical library for dense matrix computations using the PGAS Unified Parallel C language. The routines developed in UPCBLAS are built on top of sequential basic linear algebra subprograms functions and exploit the particularities of the PGAS paradigm, taking into account data locality in order to achieve a good performance. Furthermore, the routines implement other optimization techniques, several of them by automatically taking into account the hardware characteristics of the underlying systems on which they are executed. The library has been experimentally evaluated on a multicore supercomputer and compared with a message‐passing‐based parallel numerical library, demonstrating good scalability and efficiency.
Palabras clave
Parallel Library
matrix computations
PGAS
UPC
BLAS
 
Descripción
This is the peer reviewed version of the following article: González‐Domínguez, J. , Martín, M. J., Taboada, G. L., Touriño, J. , Doallo, R. , Mallón, D. A. and Wibecan, B. (2012), UPCBLAS: a library for parallel matrix computations in Unified Parallel C. Concurrency Computat.: Pract. Exper., 24: 1645-1667. doi:10.1002/cpe.1914, which has been published in final form at https://doi.org/10.1002/cpe.1914. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Versión del editor
https://doi.org/10.1002/cpe.1914
ISSN
1532-0626
1532-0634
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias