Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

UPCBLAS: a library for parallel matrix computations in Unified Parallel C

Thumbnail
View/Open
Jorge_González-Domínguez_2012_UPCBLAS_a_library_for_parallel_matrix_computations_in_Unified_Parallel.pdf (558.1Kb)
Use this link to cite
http://hdl.handle.net/2183/21712
Collections
  • Investigación (FIC) [1678]
Metadata
Show full item record
Title
UPCBLAS: a library for parallel matrix computations in Unified Parallel C
Author(s)
González-Domínguez, Jorge
Martín, María J.
Taboada, Guillermo L.
Touriño, Juan
Doallo, Ramón
Mallón, Damián A.
Wibecan, Brian
Date
2012-09-25
Citation
González‐Domínguez, J. , Martín, M. J., Taboada, G. L., Touriño, J. , Doallo, R. , Mallón, D. A. and Wibecan, B. (2012), UPCBLAS: a library for parallel matrix computations in Unified Parallel C. Concurrency Computat.: Pract. Exper., 24: 1645-1667. doi:10.1002/cpe.1914
Abstract
[Abstract] The popularity of Partitioned Global Address Space (PGAS) languages has increased during the last years thanks to their high programmability and performance through an efficient exploitation of data locality, especially on hierarchical architectures such as multicore clusters. This paper describes UPCBLAS, a parallel numerical library for dense matrix computations using the PGAS Unified Parallel C language. The routines developed in UPCBLAS are built on top of sequential basic linear algebra subprograms functions and exploit the particularities of the PGAS paradigm, taking into account data locality in order to achieve a good performance. Furthermore, the routines implement other optimization techniques, several of them by automatically taking into account the hardware characteristics of the underlying systems on which they are executed. The library has been experimentally evaluated on a multicore supercomputer and compared with a message‐passing‐based parallel numerical library, demonstrating good scalability and efficiency.
Keywords
Parallel Library
matrix computations
PGAS
UPC
BLAS
 
Description
This is the peer reviewed version of the following article: González‐Domínguez, J. , Martín, M. J., Taboada, G. L., Touriño, J. , Doallo, R. , Mallón, D. A. and Wibecan, B. (2012), UPCBLAS: a library for parallel matrix computations in Unified Parallel C. Concurrency Computat.: Pract. Exper., 24: 1645-1667. doi:10.1002/cpe.1914, which has been published in final form at https://doi.org/10.1002/cpe.1914. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Editor version
https://doi.org/10.1002/cpe.1914
ISSN
1532-0626
1532-0634
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback